Rabu, 10 September 2008

Algoritma dan implementasi

Diberikan dua bilangan asli a dan b, periksa apakah b adalah nol. Jika ya, a adalah FPB. Jika tidak, ulangi proses tadi menggunakan b dan sisa setelah a dibagi oleh b (ditulis sebagai a modulus b). Algoritma ini dapat dinyatakan dengan menggunakan rekursi kanan:

Templat:Wikicode

 function fpb(a, b)
if b = 0
return a
else
return fpb(b, a modulus b);

Secara iteratif, fungsi ini dapat ditulis sebagai:

 function fpb(a, b)
while b ≠ 0
var t := b
b := a modulus b
a := t
return a

Sebagai contoh, FPB dari 1071 dan 1029 yang dihitung dengan menggunakan algoritma ini adalah 21, dengan langkah-langkah sebagai berikut:

a b t

1071 1029 42
1029 42 21
42 21 0
21 0

Dengan mencatat hasil bagi (yang merupakan bilangan bulat) selama menjalankan algoritma, kita juga dapat menentukan bilangan bulat p dan q di mana ap + bq = fpb(a, b). Hal ini dikenal sebagai Ekstensi Algoritma Euklidean.

Algoritma ini dapat digunakan dalam konteks di mana pembagian bersisa memungkinkan. Ini termasuk polinomial cincin dalam suatu medan, juga cincin dari bilangan bulat Gaussian, dan dalam domain Euklidean umum.

Euklid pada mulanya merumuskan masalah ini secara geometri, sebagai masalah untuk mencari "satuan" yang dapat dipakai untuk panjang dari dua buah garis, dan algoritmanya berlangsung dengan mengulangi pengurangan dari sisi yang lebih pendek dari sisi yang lebih panjang. Implementasi ini sama dengan implementasi berikut ini, yang cukup tidak efisien dibandingkan dengan cara yang telah dijelaskan di atas:

 function fpb(a, b)
while a ≠ b
if a > b
a := a - b
else
b := b - a
return a

Sabtu, 06 September 2008

Interpolasi Polinomial

Dengan menganggap masalah pada interpolasi polinomial untuk deret n + 1 di titik (x0,y0)...., (xn,yn). Maka, kita diminta untuk menemukan kurva p(x) = amxm + am-1xm − 1 + ... + a1x + a0 dari sudut minimum yang melewati setiap dari titik data. Kurva ini harus memenuhi


\begin{matrix} {y_0}& = &a_mx_0^m &+& a_{m-1}x_0^{m-1} &+...+& a_1x_0 &+& a_0\\ {y_1}& = &a_mx_1^m &+& a_{m-1}x_1^{m-1} &+...+& a_1x_1 &+& a_0\\ \vdots& &\vdots& &\vdots& &\vdots& &\vdots\\ {y_n}& = &a_mx_n^m &+& a_{m-1}x_n^{m-1} &+...+& a_1x_n &+& a_0\\ \end{matrix}


karena xi diketahui, ini akan menuju pada sistem matrik di bawah ini


\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^m\\ 1 & x_1 & x_1^2 & \cdots & x_1^m\\ \vdots & \vdots & \vdots & \cdots &\vdots\\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^m\\ 1 & x_n & x_n^2 & \cdots & x_n^m\\ \end{bmatrix}\begin{bmatrix} a_0\\ a_1\\ \vdots\\ a_{m-1}\\ a_m\\ \end{bmatrix} = \begin{bmatrix} y_0\\ y_1\\ \vdots\\ y_{n-1}\\ y_n\\ \end{bmatrix}


Ingat bahwa ini merupakan sistem persegi dimana n = m. Dengan menganggap n = m memberikan sistem di bawah ini untuk koefisien interpolasi polinomial p(x):


\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n\\ 1 & x_1 & x_1^2 & \cdots & x_1^n\\ \vdots & \vdots & \vdots & \cdots &\vdots\\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n\\ 1 & x_n & x_n^2 & \cdots & x_n^n\\ \end{bmatrix}\begin{bmatrix} a_0\\ a_1\\ \vdots\\ a_{n-1}\\ a_n\\ \end{bmatrix} = \begin{bmatrix} y_0\\ y_1\\ \vdots\\ y_{n-1}\\ y_n\\ \end{bmatrix} (1)


Matrix di atas diketahui sebagai Matrix Vandermonde; kolom j merupakan elemen pangkat j-1. Sistem linier pada (1) disebut menjadi Sistem Vandermonde.


Contoh soal:

Cari interpolasi polinomial pada data (-1,0),(0,0),(1,0),(2,6) menggunakan Sistem Vandermonde.

Jawab:

Bentuk Sistem Vandermonde(1):

\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3\\ 1 & x_1 & x_1^2 & x_1^3\\ 1 & x_2 & x_2^2 & x_2^3\\ 1 & x_3 & x_3^2 & x_3^3\\ \end{bmatrix}\begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3\\ \end{bmatrix} = \begin{bmatrix} y_0\\ y_1\\ y_2\\ y_3\\ \end{bmatrix}


Untuk data di atas, kita mempunyai


\begin{bmatrix} 1 & -1 & 1 & -1\\ 1 & 0 & 0 & 0\\ 1 & 1 & 1 & 1\\ 1 & 2 & 4 & 8\\ \end{bmatrix}\begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 6\\ \end{bmatrix}


\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 1 & 0 & 0 & 0 & 0\\ 1 & 1 & 1 & 1 & 0\\ 1 & 2 & 4 & 8 & 6\\ \end{bmatrix}


Untuk mendapatkan solusinya, digunakan Gaussian Elimination

\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 0 & 1 & -1 & 1 & 0\\ 0 & 2 & 0 & 2 & 0\\ 0 & 3 & 3 & 9 & 6\\ \end{bmatrix} Baris ke-2, ke-3, dan ke-4 dikurangi baris pertama


\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 0 & 1 & -1 & 1 & 0\\ 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 1 & 3 & 2\\ \end{bmatrix} Baris ke-3 dibagi dengan 2, sedangkan baris ke-4 dibagi dengan 3


\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 0 & 1 & -1 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 1 & 3 & 2\\ \end{bmatrix} Baris ke-3 dikurangi baris ke-2


\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 0 & 1 & -1 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 2 & 2\\ \end{bmatrix} Baris ke-4 dikurangi baris ke-2


\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 0 & 1 & -1 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 & 1\\ \end{bmatrix} Baris ke-4 dibagi dengan 2


\begin{bmatrix} 1 & -1 & 1 & -1 & 0\\ 0 & 1 & -1 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 1\\ \end{bmatrix} Baris ke-4 dikurangi baris ke-3

Didapatkan persamaan linier dari persamaan matrix di atas

\begin{matrix} a_0&+&a_1&+&a_2&+&a_3 &=&0\Longleftrightarrow a_0 = 0\\ & &a_1&-&a_2&+&a_3&=&0\Longleftrightarrow a_1 = -1\\ & & & &a_2& & &=&0\\ & & & & & &a_3&=&1\\ \end{matrix}


Jadi, interpolasinya adalah p(x) = x^3 - x\,

Menemukan norm dan jarak

Menghitung Panjang vektor u dalam ruang Rn

jika u = (u1,u2,u3,...,un)


Maka Panjang vektor u


|\bar{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2 + . . . + u_n^2}


dan Menghitung jarak antara vektor u dengan vektor v


d(u,v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2 + . . . + (u_n - v_n)^2}


[sunting] Bentuk Newton

interpolasi polinominal p(x)=anxn+an-1xn-1+...+a1x+a0 adalah bentuk standar. Tetapi ada juga yang menggunakan bentuk lain . Contohnya , kita mencari interpolasi titik dari data (x0,y0),(x1,y1),(x2,y2),(x3,y3).

Jika kita tuliskan P(x)=a3x3+a2x2+a1x+a0

bentuk equivalentnya : p(x)=a3(x-x0)3+p(x)=a2(x-x0)2+p(x)=a1(x-x0)+a0

dari kondisi interpolasi p(x0)=yo maka didapatkan a0=yo , sehingga dapat kita tuliskan menjadi

p(x)=b3(x-x0)(x-x1)(x-x2)+b2(x-x0)(x-x1)+b1(x-x0)+b0 inilah yang disebut newton form dari interpolasi , sehingga kita dapatkan :

p(x0)=b0

p(x1)=b1h1+b0

p(x2)=b2(h1+h2)h2+b1(h1+h2)+b0

p(x3)=b3(h1+h2+h3)(h2+h3)h3+b2(h1+h2+h3)(h2+h3)+b1(h1+h2+h3)+b0

sehingga jika kita tuliskan dalam bentuk matrix:


[sunting] Operator Refleksi

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam gambaran simetris terhadap sumbu y, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = -x = -x + 0y

x2 = y = 0x + y

atau dalam bentuk matrik : \begin{bmatrix} -1 & 0\\ 0 & 1\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} w_1\\ w_2\\ \end{bmatrix}

Secara umum, operator pada R2 dan R3 yang memetakan tiap vektor pada gambaran simetrinya terhadap beberapa garis atau bidang datar dinamakan operator refleksi. Operator ini bersifat linier.


[sunting] Operator Proyeksi

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam proyeksi tegak lurus terhadap sumbu x, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = x = x + 0y

x2 = 0 = 0x + y

atau dalam bentuk matrik : \begin{bmatrix} 1 & 0\\ 0 & 0\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} w_1\\ w_2\\ \end{bmatrix}

Persamaan tersebut bersifat linier, maka T merupakan operator linier dan matrikx T adalah: \begin{bmatrix} T\\ \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 0\\ \end{bmatrix}

Secara umum, sebuah operator proyeksi pada R2 dan R3 merupakan operator yang memetakan tiap vektor dalam proyeksi ortogonal pada sebuah garis atau bidang melalui asalnya.


[sunting] Operator Rotasi

Sebuah operator yang merotasi tiap vektor dalam R2 melalui sudut ɵ disebut operator rotasi pada R2. Untuk melihat bagaimana asalnya adalah dengan melihat operator rotasi yang memutar tiap vektor searah jarum jam melalui sudut ɵ positif yang tetap. Unutk menemukan persamaan hubungan x dan w=T(x), dimisalkan ɵ adalah sudut dari sumbu x positif ke x dan r adalah jarak x dan w. Lalu, dari rumus trigonometri dasar x = r cos Θ ; y = r cos Θ dan w1 = r cos (ɵ + ɸ) ; w2= r sin (ɵ + ɸ)

Menggunakan identitas trigonometri didapat:

w1 = r cos ɵ cos ɸ - r sin ɵ sin ɸ

w2 = r sin ɵ cos ɸ + r cos ɵ sin ɸ

kemudian disubtitusi sehingga:

w1 = x cos Θ - y sin Θ

w2 = x sin Θ + y cos Θ

Persamaan diatas merupakan persamaan linier, maka T merupakan operator linier sehingga bentuk matrik dari persamaan diatas adalah: \begin{bmatrix} T\\ \end{bmatrix} = \begin{bmatrix} cos\Theta & -sin\Theta\\ sin\Theta & cos\Theta\\ \end{bmatrix}

Euklidian dalam n-Ruang

Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.

Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.

Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.


u1 = v1 u2 = v2 un = vn

Penjumlahan u + v didefinisikan oleh


u + v = (u1 + v2, u2 + v2, ...., un + vn)

Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh


ku = (k u1, k u2,...,k un)

Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vektor


0 = (0, 0,...., 0)

Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh


-u = (-u1, -u2, ...., -un)

Perbedaan dari vector dalam Rn dijelaskan oleh


v – u = v + (-u)

atau, dalam istilah komponen,


v – u = (v1-u1, v2-u2, ...., vn-un)

Sifat-sifat dari vektor dalam Rn

jika \mathbf{u} = u_{1}, u_{2},..., u_{n} , \mathbf{v} = v_{1}, v_{2},..., v_{n} , dan \mathbf{w} = w_{1}, w_{2},..., w_{n} adalah vektor dalam Rn sedangkan k dan m adalah skalar, maka :

(a) u + v = v + u

(b) u + 0 = 0 + u = u

(c) u + (v + w) = (u + v) + w

(d) u + (-u) = 0 ; berarti, u - u = 0

(e) k (m u) = (k m) u

(f) k (u + v) = k u + k v

(g) (k + m) u = k u + m u

(h) 1u = u


Perkalian dot product \mathbf{u}\cdot\mathbf{v} didefinisikan sebagai


\mathbf{u}\cdot\mathbf{v} = u_{1}v_{1} + u_{2}v_{2} + \cdots + u_{n}v_{n}

[sunting] Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi

  • Data Eksperimen – Ilmuwan melakukan experimen dan membuat n pengukuran numeris setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector y = (y1,y2,...,yn) dalam Rn dalam setiap y1,y2,....,yn adalah nilai yang terukur.
  • Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel x = (x1,x2,...,x15) dalam setiap x1 adalah jumlah truk dalam depot pertama dan x2 adalah jumlah pada depot kedua., dan seterusnya.
  • Rangkaian listrik – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam R4 dan tegangan output bisa ditulis sebagaiR3. Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vektor input v = (v1,v2,v3,v4) dalam R4 ke vector keluaran w = (w1,w2,w3) dalamR3.
  • Analisis citra – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturasi, dan kecerahan dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk v = (x,y,h,s,b) dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.
  • Ekonomi – Pendekatan kita dalam analisa ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel s = (s1,s2,s3,...,s10) dalam setiap angka s1,s2,...,s10 adalah output dari sektor individual.
  • Sistem Mekanis – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalahx1,x2,...,x6 dan kecepatan mereka adalah v1,v2,...,v6. Informasi ini bisa direpresentasikan sebagai vector

V = (x1,x2,x3,x4,x5,x6,v1,v2,v3,v4,v5,v6,t) Dalam R13. Vektor ini disebut kondisi dari sistem partikel pada waktu t.

  • Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi

Determinan dengan Ekspansi Kofaktor

Determinan dengan Minor dan kofaktor

A = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\  a_{31} & a_{32} & a_{33}\\ \end{bmatrix} tentukan determinan A

Pertama buat minor dari a11

M11 = \begin{bmatrix} a_{22} & a_{23}\\ a_{32} & a_{33}\\ \end{bmatrix} = detM = a22a33 x a23a32

Kemudian kofaktor dari a11 adalah

c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32

kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini

\begin{bmatrix} +&-&+&-&+&\cdots\\ -&+&-&+&-&\cdots\\ +&-&+&-&+&\cdots\\ -&+&-&+&-&\cdots\\ \vdots&\vdots&\vdots&\vdots&\vdots& \\ \end{bmatrix}

Begitu juga dengan minor dari a32

M32 = \begin{bmatrix} a_{11} & a_{13}\\ a_{21} & a_{23}\\ \end{bmatrix} = detM = a11a23 x a13a21

Maka kofaktor dari a32 adalah

c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21

Secara keseluruhan, definisi determinan ordo 3x3 adalah

det(A) = a11C11+a12C12+a13C13

[sunting] Determinan dengan Ekspansi Kofaktor Pada Baris Pertama

Misalkan ada sebuah matriks A3x3

A = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix}

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\ a_{32} & a_{33}\\ \end{bmatrix} - a12\begin{bmatrix}a_{21} & a_{23}\\ a_{31} & a_{33}\\ \end{bmatrix} + a13\begin{bmatrix}a_{21} & a_{22}\\ a_{31} & a_{32}\\ \end{bmatrix}
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32

Contoh Soal:

A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 4\\ 3 & 2 & 1\\ \end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor baris pertama

Jawab:

det(A) = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 4\\ 3 & 2 & 1\\ \end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 2\begin{bmatrix} 4 & 4\\ 3 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1(-3) - 2(-8) + 3(-7) = -8

[sunting] Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.

Misalkan ada sebuah matriks A3x3

A = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix}

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11\begin{bmatrix}a_{22} & a_{23}\\ a_{32} & a_{33}\\ \end{bmatrix} - a21\begin{bmatrix}a_{21} & a_{23}\\ a_{31} & a_{33}\\ \end{bmatrix} + a31\begin{bmatrix}a_{21} & a_{22}\\ a_{31} & a_{32}\\ \end{bmatrix}
= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32

Contoh Soal:

A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 4\\ 3 & 2 & 1\\ \end{bmatrix} tentukan determinan A dengan metode ekspansi kofaktor kolom pertama

Jawab:

det(A) = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 4\\ 3 & 2 & 1\\ \end{bmatrix} = 1\begin{bmatrix} 5 & 4\\2 & 1\\ \end{bmatrix} - 4\begin{bmatrix} 4 & 4\\ 3 & 1\\ \end{bmatrix} + 3\begin{bmatrix} 4 & 5\\3 & 2\\ \end{bmatrix} = 1(-3) - 4(-8) + 3(-7) = 8

[sunting] Adjoin Matriks 3 x 3

Bila ada sebuah matriks A3x3

A = \begin{bmatrix} 3&2&-1\\ 1&6&3 \\ 2&14&0\\ \end{bmatrix}

Kofaktor dari matriks A adalah

C11 = 12 C12 = 6 C13 = -16
C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = -10 C33 = 16

maka matriks yang terbentuk dari kofaktor tersebut adalah

\begin{bmatrix} 12&6&-16\\ 4&2&16\\ 12&-10&16\\ \end{bmatrix}

untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom

adj(A) = \begin{bmatrix} 12&4&12\\ 6&2&-10\\ -16&16&16\\ \end{bmatrix}

[sunting] Determinan Matriks Segitiga Atas

Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka det(A) adalah hasil kali diagonal matriks tersebut

det(A) = a_{11}a_{22}\cdots a_{nn}

Contoh

\begin{bmatrix} 2&7&-3&8&3\\ 0&-3&7&5&1\\ 0&0&6&7&6\\ 0&0&0&9&8\\ 0&0&0&0&4\\ \end{bmatrix} = (2)(-3)(6)(9)(4) = -1296


[sunting] Metode Cramer

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik

X_{1} =  \frac{det(A_{1})} {det(A)},  X_{2} = \frac{det(A_{2})} {det(A)}, ... ,  X_{n} = \frac{det(A_{n})} {det(A)}

dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b

Contoh soal:

Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini

x1 + x3 = 6
-3x1 + 4x2 + 6x3 = 30
-x1 - 2x2 + 3x3 = 8

Jawab:

bentuk matrik A dan b

A = \begin{bmatrix} 1 & 0 & 2\\ -3 & 4 & 6\\ -1 & -2 & 3\\ \end{bmatrix} b = \begin{bmatrix} 6\\ 30\\ 8\\ \end{bmatrix}

kemudian ganti kolom j dengan matrik b

A1 = \begin{bmatrix} 6 & 0 & 2\\ 30 & 4 & 6\\ 8 & -2 & 3\\ \end{bmatrix} A2 = \begin{bmatrix} 1 & 6 & 2\\ -3 & 30 & 6\\ -1 & 8 & 3\\ \end{bmatrix} A3 = \begin{bmatrix} 1 & 0 & 6\\ -3 & 4 & 30\\ -1 & -2 & 8\\ \end{bmatrix}

dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas

maka,

 x_{1} = \frac{det(A_{1})} {det(A)} = \frac{-40} {44} = \frac{-10} {11}
 x_{2} = \frac{det(A_{2})} {det(A)} = \frac{72} {44} = \frac{18} {11}
 x_{3} = \frac{det(A_{3})} {det(A)} = \frac{152} {44} = \frac{38} {11}

[sunting] Tes Determinan untuk Invertibilitas

Pembuktian: Jika R di reduksi secara baris dari Ä. Sebagai langkah awal, kita akan menunjukkan bahwa det(A) dan det(R) keduanya adalah nol atau tidak nol: E1,E2,...,Er menjadi matrix element yang berhubungan dengan operasi baris yang menghasilkan Rdari A. Maka,

R=Er...E2 E1 A

dan,

det(R)=det(Er)...det(E2)det(E1)det(EA)

Jika A dapat di-invers, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah dapat di-invers. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak dapat diinvers.

Contoh Soal :

A=\begin{bmatrix}  1 &  2 &  3\\  1 &  0 &  1\\  2 &  4 &  6\\ \end{bmatrix}

karena det(A) = 0. Maka A adalah dapat diinvers.

[sunting] Mencari determinan dengan cara Sarrus

A = \begin{bmatrix}      a & b & c\\ d & e & f\\ g & h & i\\  \end{bmatrix} tentukan determinan A

untuk mencari determinan matrik A maka,

detA = (aei + bfg + cdh) - (bdi + afh + ceg)

[sunting] Metode Sarrus hanya untuk matrix berdimensi 3x3

[sunting] Menghitung Inverse dari Matrix 3 x 3

A = \begin{bmatrix}  3 &  2 & -1\\  1 &  6 &  3\\  2 & -4 &  0\\ \end{bmatrix}

kemudian hitung kofaktor dari matrix A
C11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

menjadi matrix kofaktor

\begin{bmatrix}  12 &  6  & -16\\  4  &  2  &  16\\  12 & -10 &  16\\ \end{bmatrix}

cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor diatas, sehingga menjadi

adj(A) = \begin{bmatrix}  12 &  4 &  12\\   6 &  2 & -10\\ -16 & 16 &  16\\ \end{bmatrix}

A^{-1} = \frac{1}{det(A)}adj(A)

dengan metode Sarrus, kita dapat menghitung determinan dari matrix A

det(A) = 64

A^{-1} = \frac{1}{det(A)}adj(A) = \frac{1}{64} \begin{bmatrix}  12 &  4 &  12\\   6 &  2 & -10\\ -16 & 16 &  16\\ \end{bmatrix} = \begin{bmatrix}  \frac{12}{64} & \frac{4}{64}  &  \frac{12}{64}\\  \frac{6}{64}  & \frac{2}{64}  & -\frac{10}{64}\\ -\frac{16}{64} & \frac{16}{64} &  \frac{16}{64}\\ \end{bmatrix}

[sunting] Sistem Linear Dalam Bentuk Ax = λx

dalam sistem aljabar linear sering ditemukan

      Ax = λx    ; dimana λ adalah skalar

sistem linear tersebut dapat juga ditulis dengan λx-Ax=0, atau dengan memasukkan matrix identitas menjadi

      (λI - A) x = 0

contoh:

diketahui persamaan linear

      x1 + 3x2 = λx1
4x1 + 2x2 = λx2

dapat ditulis dalam bentuk

     \begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = λ \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix}

yang kemudian dapat diubah

A =\begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix}dan x =\begin{bmatrix} x_1\\ x_2\\ \end{bmatrix}

yang kemudian dapat ditulis ulang menjadi

     λ \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} - \begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}
     λ \begin{bmatrix} 1 & 0\\ 0 & 1\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} - \begin{bmatrix} 1 & 3\\ 4 & 2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}
     Gagal memparse (kesalahan lexing): \begin{bmatrix} {λ}-1 & -3\\ -4 & {λ}-2\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}


sehingga didapat bentuk

     λ I - A = Gagal memparse (kesalahan lexing): \begin{bmatrix} {λ}-1 & -3\\ -4 & {λ}-2\\ \end{bmatrix}


namun untuk menemukan besar dari λ perlu dilakukan operasi

     detI - A) = 0  ;λ adalah eigenvalue dari A

dan dari contoh diperoleh

     detI - A) = Gagal memparse (kesalahan lexing): \begin{bmatrix} {{λ-1}} & -3\\ -4 & {{λ-2}}\\ \end{bmatrix}
= 0

atau λ^2 - 3λ - 10 = 0

dan dari hasil faktorisasi di dapat λ1 = -2 dan λ2 = 5

dengan memasukkan nilai λ pada persamaan (λ I - A) x = 0, maka eigenvector bisa didapat bila λ = -2 maka diperoleh

      \begin{bmatrix} -3 & -3\\ -4 & -4\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix}

dengan mengasumsikan x2 = t maka didapat x1 = t

      x = \begin{bmatrix} -t\\ t\\ \end{bmatrix}